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The anomalous change of the velocity of sound near the Néel point was measured in MnF for the longi-
tudinal waves propagating along the [1107], [100], and [001] directions. The measured result did not show
any dispersion. The anomaly as a function of temperature was described by the power-law formula, AV /V,
~|T—Tx|™*, with the critical exponent { equal to 0.12 for 7> Ty, and 0.02 for T'< Ty, for all these longi-
tudinal waves. A significant anisotropy was found, however, in the magnitude of the anomalous change.
These results were well explained by a theoretical treatment, by which a relative value of the derivatives
of the dominant exchange interaction J, was deduced to be |(3J2/32)/(9J2/dx)| =2.74, a value in good
agreement with other experimental results. Finally, combining present sound-velocity data with those on
attenuation, the existence of a relaxation time of 3)XX107? sec is suggested over the temperature range of
T—Tx22X1072°K in the paramagnetic phase, and implications of this relaxation time are discussed.

I. INTRODUCTION

OUND velocity as a function of temperature has a
sharp dip at the critical point of the second-order
phase transition.'® This anomalous variation of the
velocity can usually be described by a power-law

formula,
1.1)

where AV is the anomalous change of the velocity from
a normal variation which would be expected if there
were no phase transition, Vo is the velocity of the
normal variation at the critical point Ty, w is the
angular frequency of sound, and # and { are the quanti-
ties to be compared with theory.

The study of the sound velocity near the phase-
transition point is as important as that of the sound
attenuation because the sound velocity in the low-
frequency limit does not involve the relaxation times
of the problem, and its anomaly near the transition
point can therefore be treated by considering only the
static part of the fluctuation. This situation makes the
problem much simpler than that of the attenuation of
sound. The magnitude of the anomalous change in the
sound velocity gives us a useful information of the
strength of the coupling between spins in the system
and acoustic phonons. Furthermore, if we combine the
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sound velocity and the sound attenuation measure-
ments, we may determine the characteristic relaxation
time, which should also be an important quantity in
the problem with which we are concerned.

A number of experiments have been carried out to
study acoustic properties of MnF; near the Néel
point.®=8 One of us (A.L.) has roughly determined the
relative value of the derivatives of the exchange inter-
actions from the attenuation measurement.® The
anomaly of the sound velocity has also been investigated
preliminarily in this material,® which revealed a peculiar
fact that the critical exponent ¢ in the above formula
Eq. (1.1) for the [100] longitudinal waves was very
close to the critical exponent for the attenuation coef-
ficient, implying that the relaxation time now would
depend very weakly on the temperature.?

In this paper, we report a similar, more detailed in-
vestigation in MnF,, varying the frequency and the
propagation direction of the sound to look for a possible
dispersion of the velocity and the anisotropy in both the
critical exponent and the magnitude of the velocity
change. .

In Sec. II, the experimental procedure of the measure-
ment is reported. The result of the experiment is
presented in Sec. III. A theory of sound-velocity
changes is given in Sec. IV. Finally, the discussion of
the experimental result on the basis of this theory is
presented in Sec. V.
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0 In the experiment quoted, the attenuation of sound grows
with frequency w as w!”. Therefore, the relaxation time deduced,
and its temperature dependence especially, must be regarded as
only qualitative.
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II. EXPERIMENTAL PROCEDURE

A system for the present measurement is in principle
the same as that reported by McSkimin,'2 but
modified extensively by Holder.* We will briefly
describe the system here.

Figure 1 is a block diagram of the system. Two fre-
quency synthesizers'* were used; one of these main-
tained the repetition frequency of pulses at a multiple
of the round-trip transit time of the pulses in the speci-
men, and the other gave the oscillation of the carrier
frequency. The pulses were generated by a gated ampli-
fier'® and fed through a matching network'® to a quartz
transducer attached on a specimen. Then, by using a
gate circuit,'” a certain echo was selected from echoes
coming from the multiple reverberation in the specimen.
The selected echo, which was not a single echo but
actually a resultant pulse of a superposition of many
echoes, was then amplified by a tuned amplifier'® and
fed to a lock-in amplifier.!® On the other hand, the fre-
quency synthesizer determining the carrier frequency
was modulated externally by a low-frequency osillator
in the lock-in amplifier. Therefore, the input to the
lock-in amplifier or the selected echo height was
modulated by the low frequency f (40 Hz, for example).

When the superposition of the echoes was optimum,
maximizing the echo height, the input signal contained
only the 2f component giving the zero output of the
lock-in amplifier. Furthermore, a feedback loop was
set including a two-pen recorder® in order to record
simultaneously the temperature of the specimen and the
variation of the carrier frequency, which gives the zero

COUNTER|
FREQUENCY GATED MAT CHING
SYNTHESIZER| |AMPLIFIER NETWORK
FREQUENCY PULSE PULSE SPECIMEN
SYNTHESIZER GENERATOR GENERATOR
LOCK- IN TUNED GATE
AMPLIFIER AMPLIFIER CIRCUIT

Fic. 1. Block diagram for the apparatus of
sound-velocity measurement.

1H., J. McSkimin, J. Acoust. Soc. Am. 37, 864 (1965).

12H. J. McSkimin and P. Andreatch, Jr., J. Acoust. Soc. Am.
41, 1052 (1967).

13 J. T. Holder (to be published).

14 General Radio, Models 1163-A and 1164-A.

15 Arenberg, Model PG-650C.

16 Arenberg, Model WB-100SN.

17 A combination of a number of General Radio’s pulse gener-
ators (Model 1217C) and a homemade circuit.

18 An amplifier built in MATEC’s Model PR201.

19 Princeton Applied Research, Model HR-8 with a preamplifier
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2 Hewlett-Packard, Model 7100B.

K. KAWASAKI AND A.

IKUSHIMA 1

output of the lock-in amplifier. This system was capable
of detecting AV/V, equal to 1078 when the attenuation
coefficient was not larger than about 0.2 dB/cm.

The procedure related to the temperature measure-
ment, its stability, its gradient in the specimen, etc.
were the same as were described in a previous paper.?
The relative accuracy of the measured temperature was
better than 0.001°K, and the absolute accuracy was
about 0.02°K. The Néel temperature T’y of the present
specimens were found to be (67.314-0.02)°K.

The present specimens were obtained from Semi
Elements, Inc. Three pairs of the surfaces, with crys-
tallographic orientations of (001), (100), and (110)
were polished flat and parallel to each other. The sur-
faces were oriented within 0.5° from the above three
principal directions by x ray. Rounding of the attenua-
tion coefficient curve occurred only within 0.01°K of Ty
in the log-log plot against 7— Ty, which means that the
specimens were nearly perfect.

III. EXPERIMENTAL RESULTS

Figure 2 shows the observed dip of the sound velocity
in MnF, near T for three kinds of the longitudinal
waves. To discuss the anomalous part of the variation
of the velocity of sound, the normal variation which
would be expected if there were no phase change has
to be determined. We employed here the simplest
definition of the normal variation, that is, the normal
variation can be given by a linear extrapolation of the
sound-velocity change at temperatures far above T.

Figure 3 is, then, a log-log plot of the anomalous devi-
ation of the velocity versus T— Ty and e= | T—Tx|/Tw
for T> Ty, and Fig. 4 is a similar plot for T<Ty. It is
clear that there is no anisotropy in the critical exponent
¢ which reminds us of the attenuation of sound experi-
ment in MnF,,3 where there was also no orientation
dependence of the critical exponent. This situation is
also similar for the value of { for T'< Ty, where the
value is much smaller than that for 7>7Ty for the
velocity and the attenuation of the sound.

On the other hand, the magnitude of the anomalous
variation of the sound velocity changes appreciably for
different directions of the wave propagation; the varia-
tion is largest for k||[[0017], and smallest for k||[110]. All
of these variations are, however, not due to the anom-
alous thermal expansion?! near the magnetic transition
point, as the expansion anomaly is at most only 1072,

Figure 5 is a plot of —AV/V, for two different fre-
quencies for 7> Ty, indicating that there does not seem
to be any remarkable frequency dependence. Table I
summarizes the observed result.

1V. THEORY OF SOUND-VELOCITY CHANGES

We here present a calculation of sound velocity in

the presence of weak spin-phonon interaction as an

2D, F. Gibbons, Phys. Rev. 115, 1194 (1959).
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VELOCITY CHANGE,- AV/Vo

Fi1c. 4. A log-log plot of anomalous deviations of velocities of 10-MHz longitudinal sound below the Néel temperature.
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TABLE I. Summary of the results.
.s AV AV
Critical exponent ¢ _— / N
k T'>Tx T<Twn VO /g VO / 119 AV-V) e /(AV-VO) g
[1103 0.12 0.02 1 1
[100] 0.12 0.02 1.2¢ 1.0,
[0017] 0.12 0.02 3.5 3.55




1 VELOCITY OF SOUND IN MnF:

application of statistical-mechanical theory of collec-
tive motions at finite temperatures.?? As long as we are
interested in the critical anomaly in the sound wave due
to magnetic transition, we may ignore lattice anhar-
monicity, and furthermore if there is no conserved
quantity associated with the magnetic system,?? the
normal coordinates of the sound-wave mode are taken
to be annihilation and creation operators of a sound-
wave quantum by and b¢*?* Then the sound-wave
frequency wy is given by

= 1(bi,bi*)/ (b bi*) = LoD/ F(bisbic®)

= l/h(bk,bk*) ) (41)

where

B
(4,B) E/ dN(Ade M Be M)y |
0

the angular bracket denotes an ensemble average, H is
the total Hamiltonian, and 8=1/kpT. The sound fre-
quency shift that accompanies the sound-wave attenua-
tion contributes only to sound-wave dispersion and does
not affect the zero-frequency sound velocity, and we
shall leave it out of consideration in this paper. For the
system Hamiltonian H, we then take

II=H0+H1+H2, (42)

where H, corresponds to uncoupled spin and phonon
systems,

IJ[):Z hwkobk*bk-l—z Z ]ij“SiaSja y O=X,9,3, (4:3)
k

a i

and the spin-phonon interaction Hamiltonians in-
volving one and two phonons are given, respectively,
by24
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Hi=Y(h/2N Mw®) 2 (b b ) UV, (4.4)
K
Hy=3% 3 (1/2N M) (0 o)~ *(bicb—sr +b_i* by
k k'
Foubi*+biFbgr) Ui @, (4.5)
afij“
Uk(l)___Z(eikli_eikf-Rj)vk,z Si“Sj“,
17 a 4 "
Ui @ =1 3 (6% R — gik Ri) (g ik’ - Ri — ik’ - Ry)
i
o 2T s
KV V_gr: 2%
T RwR,

where N is the number of lattice sites, M/ the mass per
lattice site, Vi the polarization vector of phonon k,
and R; the position vector of sth site. Here we always
assume that wave vectors such as k and k' also specify
phonon polarizations. Our problem then amounts to
calculating (bx,b*) regarding H'=H,+H, as a small
perturbation. For this purpose we will make use of the
following familiar expansion formulas:

8 B A
<X>=<X>°_~/ dA(H’(—ih)\)X>0c+f d)\1/ d\2
0 0 0
X{H (—ihn)H' (—iling) X yo®+ - - -
A
e M XM =X (1h\) +/ AM[X 6N, H (i)

A A
+ f N / INLTX AN, Gl T (i) ]
’ ¢ NI

where X (i%\)=¢eMoX e Mo for any X, (-« )¢ is the un-
perturbed ensemble average, and (ABC::-)® is the
cumulant or connected average of the product of 4, B,
C, -+ -. Then we find, up to the second order in H’, that
for any A4 and B,

(4.6)

B 8 8 8 A
(4,B)= / ANAB(IN) Yo— f M\ f ANo(H' (— N § AB(iTNa)} Yoo+ / dh / dNa{A[B(ifiny), H' (i%iNs) 1o

8

8 A1 A2
+ / N / s / IN(ALTBGAN), H! (ii\) L H (iFina) Do

8 M
dh / s / ANg(H (—itiNg) | ALB@HiNG), H! (iins) } )t

B B A2
+ /0 an fo s fo IN(H (=T H! (— it {ABGINDY Yo, (4.7)

2 H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).

» Spin-lattice relaxation would be enough to guarantee this. If this were not the case, bx and bix* would couple with such conserved

quantities to form normal coordinates.

24 K. Tani and H. Mori, Progr. Theoret. Phys. (Kyoto) 39, 876 (1968); and (private communications).
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where the quantities in curly brackets should be treated
as single units in taking cumulant averages.

Choosing 4 =b, and B="5*, the rest of the calcula-
tion is straightforward, and only the results will be
presented. Here we retain only the lowest-order non-
vanishing contributions, i.e., H1 and H» appear in the
second- and first-order perturbations, respectively. The
frequency shift Awk can then be written as

Awx= (Awi) 1+ (Aw)z, (4.8)
where
(Awi) 1= — (8/2N Man®){U L U_©)q, (4.9)
(Awi)e= —i~<Ukk<2>>o<1+ MJ (4.10)
2N M ® ePhor’ —1

Here we have used the fact that for crystals with in-
version symmetry,

(U ®)o=+(U_sc—xP)o
and
(U U_®Yo= (U DU D).

The change in the velocity of sound, AV, is

AVko——:%cir% Awk/k:AVko(l)+AVku(2), (411)
with
AV, W= —(B/2NM Vi,2){(6W, )%, (4.12)
AV, = QNM V)XW, @, (4.13)
where
J ;%
,[,Vko(l)zz kO'Riij'Z S8, (414)
(%) « i
62]“‘0‘
I/an A= Z (k() . R”) 2Vkv*k 22 4“*’*510‘51‘0‘ s (4:15)
25 [ RlaRJ
and
koE k/k y RijERi—'R]', and SXEX—-<X>0

for any X. Vi, is the sound velocity in the absence of
spin-phonon interaction, which still depends upon the
direction of propagation of sound as well as on the
polarization, which we indicate by the subscript k.

The results show that anomalous changes in sound
velocity are expressed in terms of two-spin and four-
spin correlation functions. Now, as far as the critical
anomaly is concerned, the Wy’s behave as the spin
Hamiltonian and —AVy,Y has an anomalous peak
which behaves like the specific heat, and AVy,® behaves
like the internal energy of the spin system. Thus, when
AV, M50, this contribution dominates. However,
there are also the cases where AV, (V=0 and AVy,
behaves like AV, ®.? In the following, we assume that

% For instance, when spins are arranged in a simple cubic
lattice with only nearest-neighbor exchange interactions, a shear

wave with k along [100] and vy along [010]has vanishing A Vi, ®.
Rénard and Garland [J. Chem. Phys. 44, 1125 (1966] also
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AV, M5£0 as the present experiment indicates and also
restrict ourselves to the longitudinal sound waves
Vi =Kko. Thus we have

Wie® =3 ¥ kykiRijn 55525255, v,6=%9,2,

j ayd

(4.16)

with J;5%=3J;;%/dR;js5, and R;js is the component of
R;; along the § axis.

Let us now turn to the contributions of various
neighboring spin pairs to AV, for isotropic Heisen-
berg magnets J;;*=J;¥=J;7=J;;. If one factorizes
the four spin correlations into the product of spin pair

correlations,
— AV, & Fiey®/ V0, 4.17)

aside from a common factor that becomes singular at

Ty, where .
Fko=z Z kvkéRiiv-]ijﬁ-

J vd

(4.18)

Thus, the relative importance of various neighboring
spin pairs to —AVg,® is found from Fy, Now, the
factorization approximation is known to be rather poor,
overestimating the singularity at Ty, and hence the
relative importance of various neighboring spin pairs
would, in general, differ from that given by (4.17)
and (4.18). However, in many magnetic substances, the
exchange interactions between particular pairs of
neighboring spins (for MnFs, second-neighbor pairs)
give the largest contribution to —AVy,"Y, and if we
assume that the correlation of exchange energy density
fluctuations associated with these particular neighbors
does not depend on the orientation of these neighboring
pairs, as long as the distance between these pairs is
very large,? the relative importance of various pairs of
this kind is correctly given by Fi,. Although the relative
importance of contributions to —AVy,® involving
other kinds of spin pairs are no longer given correctly
by Fy, the discrepancy would still amount to finite
multiplicative factors of order unity, because all sorts of
four spin correlations involved in {((IWy,V)%) would
produce similar singular factors, which behave like
specific heat (see below). Thus, we may still use Fy, to
obtain rough estimates of the contributions of other

mention such an example for a two-dimensional lattice. They
also note that the compressional stiffness constant behaves like
specific heat. Our result thus may be viewed as a generalization
of Rénard and Garland’s result. The results similar to (4.11)-
(4.15) have been previously obtained also by V. N. Kashcheev
[Phys. Letters 25A, 71 (1967)7]. We are indebted to Professor B.
Liithi for bringing this reference to our attention.

26 For the square Ising model with nearest-neighbor interaction,
this has been verified to be the case for nearest-neighbor spins at
the critical point 7. The energy-density-energy-density cor-
relation at a distance R, frr(R), has the form (J sinh2K/+J)?
X (singular factor at 7'c), where J and J’ are the exchange inter-
actions of horizontal and vertical spin pairs and K.,'=J"/kpT,
[R. J. Hecht, Ph.D. thesis, University of Illinois, 1967 (unpub-
lished); Phys. Rev. 158, 557 (1967)]. Correlation of two spin
pairs of various orientations are given as the coefficients of J2,
2JJ', and J” of fer(R). Since sinh2K. —1 as J —J’, these
correlations become identical when J=J" and T'=T,.
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kinds of pairs to —AVy,®. Thus, we calculated Fy,
for various longitudinal sound waves for the body-
centered tetragonal magnetic lattice like MnF, with
the lattice constants @ and c. Abbreviating J,;" for
dJ:j/dR:;s with Rj; the position vector for the nth
neighbor in the first quadrant as shown in Fig. 6, we
obtain the following results for Fy, (note that Js/=0
and Jo,' = J»,’ by symmetry):

k along [100] or [010], 2a(2Js,'+J3.')
k along [001], 26(2J 2/ +J1.) (4.19)
k along [110], 2a(2J 2/ +T5d).

The same quantities appear in the static correlation of
random force in the work of Tani and Mori.?*

The factorization approximation used to obtain
(4.17), (4.18), and (4.19) can be replaced by more
modest assumptions for four-spin correlations to obtain
a slightly more complicated but equally useful result for
(W, D)%), For the magnetic system being considered
here, we find for Wy, the following:

for k along [100],

2
> Si-Siadl,

AzTH#0

]
a2 [372 2 Si-SipartJa
T Az
for k along [001],
8 2
4 Z E%]%/ Z S;- S'i+A2+]lz, Z S;- Si+Al] , (4.20)
[3 Ag A1

for k along [1107],

4

WX [ %

Ag,A92ZA20 >0

4
Si-SipartJs’ 2 Si-Siyag],
A3

where A, is R;; for the nth neighbor spin pairs. If we
only assume that the correlation of two spin pairs does
not depend upon the orientation of two spin sites in
individual pairs? and that they all show the same type
of singularity at 75 when the distance between the two
pairs is very large, we have, instead of Fy2, the cor-
responding quantity Fy,? of the following forms, which
give the relative importance of various neighboring spin
pairs to —AVy,M:

for k along [100],

(2a)’[(2T5 )2+ Z(Zsz’)Jax'fza‘l‘ (]sx')zf%:] ’
for k along [0017],

(20)°[(2T2.)*42(2T2.) T 1! frot+ (J1) 2 fua ],
for k along [1107],

Qo)L (2T 2" )24 2(T 2 ) 50 fes+ (T 3a')2f33] s

27 This applies, of course, only when the change of orientation
of pairs does not alter the distance between the two sites of the
pair. Thus, for a first neighboring pair, only one orientation is
possible. Similarly, for a third neighboring pair, only two orienta-

(4.21)
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T16. 6. A unit cell of Mn[F,. First-, second-, and third-neigh-
bor exchange interactions are indicated by Ji, Ji, and Js,
respectively.

where

fmn5§ Spmn(R)/ % ‘P22(R) )

(independent of the orientation of A,, and A,) (4.22)
with
Pmn(R) = (8(5:-Si14,,)0(Si1r - Siyria,)) -

The magnitudes of —AVy, are then proportional to
Fit/Vi,©. Equation (4.19) further supposes that
f23=f12= f11:f33= 1. These f’S reduce to finite num-
bers of order unity at Tx and do not depend on the
orientation of A’s by our assumptions.

On the basis of these results we shall discuss in Sec. V
our experimental results for AVy,.28

(4.23)

V. DISCUSSION

The first point to be mentioned is the value of the
critical exponent ¢ in Eq. (1.1). The present experiment
revealed that { is 0.12 in the paramagnetic phase, which

tions are possible, and so on. Our assumption can be visualized
also as follows: The four-spin correlations of our interest can be
viewed as a change in correlation of neighboring spin pairs due to
a disturbance caused by a slight change in an exchange interaction
between another neighboring spin pair situated a long distance
away.

Our assumption is then true if a local disturbance propagates
through the lattice of MnF, in circularly symmetrical fashion in
the (001) plane at large distance as the critical point is approached.
This is similar to the way that waves on a water surface produced
by a thrown stone of irregular shape propagate in a circularly
symmetric manner at large distance.

28 After a substantial part of this work was completed, we
found that H. S. Bennett appears to have done a similar calcula-
tion, which was quoted by Moran and Liithi (Ref. 4). Since the
details of this work are not yet available to us, we cannot com-
pare his work with ours except to emphasize that in our final
result (4.21) we have not used the factorization approximation
of four-spin correlations, which apparently was used by Bennett.
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is in agreement with the corresponding exponent « for
the specific heat, that is 0<a<0.16.2° Furthermore,
from the acoustic experiment, { is 0.02 in the anti-
ferromagnetic phase, which also seems to agree with «
in the antiferromagnetic phase, where 05a<0.18.%
The conclusion expressed by Eq. (4.11) and the dis-
cussion that follows was, thus, proved to be valid by the
present experiment.

The present theory can also explain relative magni-
tudes of the anomalous change in the sound velocity for
different directions of the wave propagation. First of all,
the theory accounts for the fact that (AV:V®)11q; is
very close to (AV-V®)q0;, since the expressions for
Fy,? and Fy? are exactly the same up to Js' for these
longitudinal waves implying that Vi, - AV, should
be the same for them by (4.17).3% In Table I, the magni-
tude of (AV-V®)y, which is proportional to Fy,* or
Fy2, is compared, and the conclusion is verified there.
This gives a rather direct support to our theory of
Sec.IV. Furthermore, therelative magnitude of AV - V'
for [110] and [001] gives us the relative value of the
derivative of the exchange interaction J'. Neglecting the
supposedly small quantities, J1 and J5', we can deduce
that

| o' [T od' | = 2.7, (5.1)

which agrees rather well with the value, 2.2~2.6, ob-
tained from the attenuation measurement in the same
specimens.® The present value is considered to be more
reliable because the sound velocity is more simply
related to the spin-phonon interaction, not involving
relaxation times. The present value is also in a good
agreement with the value 2.1, deduced by Tani and
Mori2* from the experiment by Benedek and Kushida.3!

The relaxation time should also be discussed here.
Assuming a single effective relaxation time 7, the ratio
of the attenuation coefficient o* to the sound-velocity
change gives 7 2232

r=(V%w?)[a*/(—AV/V0)]. (5.2)

Using the values of o* and —AV/V, at e=10"2 for
10 MHz, this formula yields r=2.9X107° sec, which
means that wr becomes unity for frequencies of about
60 MHz. Therefore, in the frequency region of our
experiment, wr~1, which makes the interpretation of
the experimental results somewhat difficult. Thus,
much insight will be gained into the sound propagation
mechanism in MnF. by acoustic measurements at
high frequencies w>>1/7 and at low frequencies w<K1/7
where o < w?

» L. P. Kadanoff ef al., Rev. Mod. Phys. 39, 395 (1967).

VAV-V® considered here may be written as A(3V?). This
quantity arises from the “polarization operator’ that appears in
the phonon Green’s function. See for instance, H. Wagner [report
of work prior to publication (1969)7].

3 G. B. Benedek and T. Kushida, Phys. Rev. 118, 46 (1960).

% Although, strictly speaking, this formula is valid for w71,
where o* xw? because the major contribution to AV comes from
the first-moment sound-wave frequency which does not depend
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Let us now consider further consequences and im-
plications of the existence of such a relaxation time.
For this purpose we need another relaxation time .
that characterizes the dynamics of critical fluctuations.

In the absence of magnetocrystalline anisotropy, we
put33

To 1= wee, (5.3)
where w,, is the characteristic frequency far from T'y.
We estimate w., from the second frequency moment of
the staggered magnetization ¢ at infinite temperature as

W= (62)s/ (0%)w0= (27/3)S(S+1)J*. (5.4)

For S=3% and |Jz| =1.76°K,* we found that we=4.5
%102 sec™™. In the presence of a small uniaxial anisot-
ropy such as in MnF,, 7,7! would behave as e in the
immediate vicinity of Tx * and as e for temperatures
further away, where y=~$% is the critical exponent for
staggered susceptibility. Both of these behaviors may
be represented by a single formula for 7,7:

T = wee?(eat €)',

(5.5)
where €4 is a small number representing the importance
of anisotropy energy compared to the exchange energy,
and we take e4=H,/Hg. Here, H 4 is the anisotropy
field of 7800 G, and H g is the exchange field of 550 000 G
for MnF3,% and we have e4=1.4X1072%

Suppose that the spin-phonon interaction Hamil-
tonian H’ is divided into two parts, H' = H ,+H, such
that the two relaxation times 7, and 73 associated with
H, and Hy, respectively, exhibit distinct behavior near
the transition point. Then the attenuation coefficient
o is proportional to (H2)ra+ (Hv2)7s.%8 Thus, if (H,?)
and (H?) are of the same order of magnitudes, the
attenuation coefficient is dominated by the process with
longer relaxation time.?” In the following discussion we
assume that the two relaxation times 7 and 7, somehow
correspond to 7, and 7.

Now, =1, for e=e~3X1074 i.e.,, |AT|=|T—Tu]|
= |ATo| ~(2X107%)°K. For |AT|Z|AT,|, 7>, and
the relaxation processes associated with 7 are expected
to dominate the attenuation of sound at least for small

on the frequency w, the formula still gives the correct order of
magnitude of = for larger wr unless w31,

# K, Kawasaki, Progr. Theoret. Phys. (Kyoto) 39, 285 (1968);
40, 11 (1968); B. Halperin and P. C. Hohenberg, Phys. Rev. 177,
952 (1968); J. Villain, J. Phys. (Paris) 29, 687 (1968) ; P. Résibois,
J. Phys. Soc. Japan Suppl. 26, 127 (1969).

3 A, Okazaki, K. C. Turberfield, and R. W. H. Stevenson, Phys.
Letters 8, 9 (1964).

% S, Foner, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc., New York, 1963), Vol. I, p. 383.

3 An example of this is the case where H, is identical to the
spin-system Hamiltonian apart from a constant numerical factor,
and Hp is the remainder. The separation of H' into H, and H,
can be conveniently made by the use of the projection operator.
See Ref. 39.

3 This case should not be confused with the case where more
than one processes compete to relax the same part of the spin~
phonon interaction Hamiltonian. In the latter case, of course,
the relaxation process with the shortest relaxation time is most
important.
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sound-wave frequencies w, such that wr< 1. For |AT|
< |ATo|, on the other hand, the relaxation processes
associated with 7, dominate the sound attenuation for
wS<1/7.. Thus, the attenuation changes its behavior
at |AT|=~0.02°K at least for w< 1/7 and also the curve
of attenuation versus temperature changes its character
at the frequency w~1/7~55 MHz. Indeed the attenua-
tion data reported elsewhere by one of the present
authors (A.L.) appear to exhibit just such a behavior.?

Our discussion so far suggests the existence of two re-
laxation times, 7 and 7.. The question then arises that
these two relaxation times should appear in other ex-
periments such as NMR linewidth and neutron scatter-
ing.?® In order to fully answer this question, we must
know the nature of the relaxation process that has this
characteristic time, which is not known. We merely
point out that NMR linewidth and neutron scattering
directly involve time-displaced pair-correlation func-
tions of the order parameter,® hence the relaxation pro-
cess entering these experiments have a characteristic
time 7.. However, these experiments do not involve
processes associated with energy change of the spin
system, for instance. On the other hand, the fact that
the attenuation of sound involves four-spin time cor-
relation function provides room for processes other than
just the order parameter relaxation® and, thus, furnishes
a tool for investigating such relaxation phenomena, a
feature also shared by inelastic light scattering experi-
ment.* Thus, the interpretation of propagation experi-
ments of sound is, in general, more difficult than those
of NMR and neutron. Nevertheless, under certain
special circumstances, the interpretation can be made as
simple. We illustrate the point by considering the at-
tenuation of sound in an ideal cubic magnet, such as
RbMnF;, where only the nearest-neighbor spins are
exchange-coupled.** Then for a longitudinal wave pro-

3 P. Heller, Rept. Progr. Phys. 30, 731 (1967); W. Marshall
and R. D. Lowde, 7bid. 31, 705 (1968).

® K. Kawasaki, Phys. Letters 294, 406 (1969).

9 P. A. Fleury, Phys. Rev. 180, 591 (1969); T. Moriya, J.
Phys. Soc. Japan 23, 490 (1967).

4 C. G. Windsor and R. W. H. Stevenson, Proc. Phys. Soc.
(London) 87, 501 (1966).
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pagating along [111] direction, all the exchange inter-
actions contribute equally to spin-phonon interactions,
and only the relaxation of spin energy density affects
the propagation of sound. This is not always the case for
other directions of sound propagation.*?

VI. CONCLUDING REMARKS

In the present paper, we reported the detailed meas-
urements of anomalous sound-velocity changes of
MnF; near the Néel point. The results support a theory
based on weak spin-phonon coupling of the forms (4.4)
and (4.5) and yield a useful information for the spacial
derivatives of exchange interaction (5.1). The results
are then combined with sound-attenuation data in order
to investigate the absorption mechanism at sound,
which suggests the existence of a rather long relaxation
time of 2.9XX107? sec. Although the nature of the relaxa-
tion processes with such long relaxation time is not yet
clear, the finding warrants further experimental and
theoretical investigations on this point, which we hope
will eventually solve mysteries besetting the propaga-
tion of sound near magnetic critical points.
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4 A similar point has been discussed by Tani and Mori (Ref. 24)
for MnF,. Recently, Liithi and Pollina (Ref. 5) observed that
their sound-propagation data are consistent with the assumption
that spin-phonon coupling is proportional to the energy density
of spin system. In fact, however, in their experimental situation,
the relaxation of total energy density of spins as well as the
relaxations of various parts of spin energy density associated with
exchange interactions of spin pairs in various directions play a
role. Their results show that the latter relaxation processes do
not produce any critical anomaly, which still remains to be under-
stood theoretically.



